SOLUTION OF SOME PERIODIC ELASTOPLASTIC PROBLEMS

V. M. Mirsalimov UDC 539.374

The article considers an elastoplastic problem for a plane weakened by an infinite number
of round openings. It is assumed that the level of the stresses and the distance between the
openings are such that the round openings are completely enveloped by the corresponding
plastic zone; under these circumstances, the adjacent plastic regions do not coalesce., The
article also considers the inverse elastoplastic problem under conditions of plane strain
for an unbounded plane, weakened by a periodic series of openings. A number of commu-
nications have been devoted to periodic problems in the theory of elasticity and plasticity
with an unknown boundary [1~8]. In distinction from [1-8], in which the method of perturba-
tions was used, another method is used to solve periodic elastoplastic problems, making it
possible to obtain a solution with any arbitrary relative dimensions of the region,

§1. Let there be a plane with round openings, having a radius R(R<1) and centers at the points Py =
mwm=90, £1, £2,...), w=2,

We introduce the notation: Ly, is the contour of an opening with its center at the point Ppy; Ty, is
the corresponding elastoplastic boundary; Dz is the exterior of the contour T

At the contour of an opening Ly, the bouﬁdary conditions have the form
o,=—p, Trg=0,
The condition of creep is taken in the form |
(0% — O)? + 42y = 42,
The field of the stresses in the plastic zone has the form [9]

crz—-p-;-?lkln-—%—; Og=2k— p-+2kln 4, 7,4=0. (1.1)

In the elastic region the stresses are determined using the Kolosov— Muskhelishvili formula [10]:
0,+ 0e=4Red(z); {1.2)
Og— 0, +2iT, =2 [0 (z) + ¥ (z) Je%®.

At the unknown contour I',,, separating the elastic and plastic regions, all the stresses are continuous.
Using formulas (1.1), (1.2), we obtain the boundary conditions at the contour Ty

— k z = z
Re@(z):iz—p-}—jlﬂ};‘; () + ¥ () =k —.

We go over to the parametric plane of the complex variable ¢ using the transform z=w(t). The ana~-
Iytical function z = w(¢) effects the conformal mapping of the region Dy on the region Dy in the plane of ¢,
which is the exterior of circles I, of radius A with centers at the points P

To determine the three analytical functions (Q)=®[w()], PO =¥ [w(f)] and wE), we obtain a non-
linear boundary-value problem at I,,:

Reg(f) =52 4% 1n0EoG) (1.3)
Sy O+eE=+28. (1.4)
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Solving the Dirichlet problem (1.3), we find that at Dy
o) =25E 4t rw® g £ (1.5)
Using (1.5), we transform boundary condition (1.4) at Iy, to the form

Lo’ ) ¥ (O)=ko(d). (1.6)

The functions ¢ (), ¥(€),and w () are sought in the form of the series

> 220-H20(2R) 7y
¢ (0) =+ 2 ok +2 —(9—,1.{:17@); (1.7
..k+2 (9k) @ A2
2 Parnss —mrri (9,\_7_ N A 6 E Clon o W—D—,(—); (1.8)
}\212—{—2 (2h—1) C
o) =07+ ;:.0 Agps2 —(2++1)!—(~), (1.9)
where —fmN_t _ L=, NP 1
p(5) ((o\) sin?(-g—g) 3 (o) ) i s(Z) ‘% [(;——Pm)z '1;’::_1?1]

Primes with the summation sign mean that the index m=0 is included in the summation,

We not give the dependencés which must be satisfied by the coefficients of expressions (1.7)-(1.9),
From the conditions of symmetry with respect to the coordinate axes we find that

Ima2h+2=lm ﬁ2h+2=ImA2k+2=0, k:O, 1, 2,. .« e (1.10)

It can be shown that the relationships (1.7)-(1.10)define a class of symmetrical problems with a periodic
distribution of the stresses [11].

From the condition of the equality to zero of the principal vector of the forces acting on the arc con-
necting two congruent points in Dy, it follows that

2
@y = 7;[527‘2-

By virtue of the satisfaction of the conditions of periodicity, the system of boundary conditions (1.6)
at Iy, m=0, £1, £2,,,.) is replaced by one functional equation, for example, at the contour 7,,

To set up equations for the remaining coefficients of the functions ¢ (£), ¥({}, and w(£), we expand
these functions in Laurent series in the neighborhood of the point £ =0:

hod 2h+-2
¢(D)=0,+ 2 [« 2 0% ) 22;1_1_2 - 2 a2h+2?\,2h+2 2 r; kCZJ (1.11)
2 2k-+2
¥ (5) = 2 Bor-to ggm-i- Z Por-t2h 2h+22 rinld — Z (2% -+ 2) a2h+2A2h+2 E (2 4 2k + 2) ;4223 (1.12)
A2RT2 CZJ-I-i
0@)=0— go A2k+2(2]\ ey gmﬂ 2A2h+‘?}\"‘h T2 E 3T (1.13)

& + 2+ N giypyy < 1
Tik = T 2k + 1)1 25 F2R+2 githts = zm}‘.—'_‘i TGTeRTE

Substituting into the boundary conditions (1.3), (1.6) at the contour I, = hel 9), in place of ¢ (£),3(),
and w (¢), their expansions (1.11)-(1,13), and equating the coefficients with etko k=0, £1, £2,...), we ob~
tain an infinite system of nonlinear algebraic equations with respect to ayk. Bk, Ak [condition (1.3) was
first differentiated with respect to 6],

The equations of the first approximation have the form
Bt AuBMrio-tAsvo=he; By + Asby = - BAMNry o3
Yo Ay FABuM o= —FkA,; 200(1+4r0)d=d,

where
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¢ =14 Aphrop; d=c* + (1 + —3;“ ?»lorio),ﬁ;
dy = — 20y (1 = rials i = Barsoh P 4 pirsd — 207+ 2 a0 (1=0,0)

To obtain expressions connecting the parameter A with the applied load p, we substitute formulas
(1.7), (1.9) into the boundary condition (1.3), we multiply the expression obtained by 1/27i¢, and integrate
over the circular contour 1,. As a result, we obtain [10]

o« _ l, oo
o+ D G2 b o = ii‘jziﬂ +kln5 [1 + > A2k+27\42&+2"0,h:]-
k=0 k=0

The results of a calculation in the first two approximations are given in Table 1.

Setting ¢ =?\eie in (1.13), we obtain the equation of the elastoplastic boundary:

r=|o(he'®)|=£(6).
In the first approximation
r2=A%d-+d, cos 20). (1.14)

Here

oo . .
Fmax = A [1 -+ A«_. (— 1 -+ 7\.2]:2:0 2],]_;_01 }\ZJ)];

! ) —1/ - \
rminzx[i +A2(1—H,2 > (T,-)irii*””)} (1.15)
. =R

\

Figure 1 shows the elastoplastic boundary for the case R=0.3, p=2.12 A=0.7, rp;,,=0.81, r
0.58).

min~

The condition rp,;, = R determines the smallest load with which the contour of an opening is com-
pletely enveloped by the plastic zone. The relationship (1.15), with Tmax = 1, permits finding the greatest
load with which the plastic zones touch each other.

Figure 2 gives the dependences of the parameter A on the value of the applied load p/k for several
values of the radius of an opening R. Up to now, the mean stresses in the plane were assumed equal to
zero, In the plane, let there be the mean stresses (elongational at infinity)

N ac o0
Ox - 0y, Oy =0y, Tgy = 0.

In this case the solution is sought in the form

gu (D) =220 1 o (0,
(D = 2% 4y (D),

where ¢ (£) and P(¢) are defined by relationships (1.7), (1.8).

TABLE 1 »
Coeffi- 8
cients 04 | oz | o3 0,4 0.5 0.6 | o7 0,8
First approximation
aafk 0,00796] 0,02002} 0,05677] 0,08503] 0,11005] 0,13038] 0,14587] 0,15693
B/l 1,00006) 1,00085f 1,00330] 1,00774| 1,01409] 1,02269{ 1,03508] 1,05521
Ba/k 0,00796] 0,02909 0,057331 0,08726{ 0,11607} 0,14352] 0,17120] 0,20281
Az —0,00796]|—-0,02905|—0,05697|—0,08592|—0,11279|—0,13709|—0,16003|—0,18362
Second approximation
aolk 0,00796' 0,02914| 0,05766] 0,08820| 0,11759] 0,14498| 017228 0,18701
as/k 0,00021] 0,00238] 0,00889] 0,01882| 0,02468] 0,02504] 0,02597| 0,02672
o/ ke 1,00006| 1,00084| 1,0033t] 1,00778 1,01420] 1,02306| 1,03621] 1,05787
alk 0,00796; 0,02802| 0,05677[ 0,08582{ 0,11176| 0,13612] 0,1680!] 0,i8033
Belk ~0,00014|—0,00154(—0,00555|—0,01036{—0,01073]—0,00293| 0,00814] 0,01169
Az ~0,007961—0,02905|—0,05697]—0,08592]—0,11290|—0,13778| —0,16 182} —0,18594
Ay 0,00001 0,00009] 0,00028] 0,00001{—0,00208|—0,00702]—0,01321{—0,01674
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TABLE 2

Coeffi- A

clents ot | o2 | oes | oes | 0s | o 07 | o0a
First approximation

Baip 1,00822] 1,03286) 1,07362] 1 ,12932 19747} 1,27224] 1,34808| 1,41607

Bap —0,00828]—0,03395|—0,07921|—0,14709]—0,23994| —0,35651|—0 48724 —0 60592

- Az 0,060822f 0,03293] 0,07445| 0,13401} 0,21518] 0,32659] 0,48933] 0,76102

Second approximation

B2/p 1,008221 1,03286] 1,07360) 1,12918] 1,19636] 1,26899| 1,33927| 1,40162

Bs/p —0,00829}—0,03398|--0,07949{—0,14864}—0,24588/-—0,37395|—0,53021}—0,70450

Be/p 0,00002) 0,00042[ 0,00224f 0,00760] 0,02034 0,04695| 0,09695 0,18274

A2 : 0,00822] 0,03293] 0,07445] 0,13401] 0,21509] 0,32600} 048672 0,75238

A, 0,00004| 0,00067 0,00342] 0,01088] 0,02704] 0,05838] 0,11845 0,24735

§2. Let there be a plane, weakened by unknown curvilinear openings having centers at the points
Pp=mwm=0, 1, £2,...), w=2,

We denote the contour of an opening with its center at the point Py, by Lyy, and the exteriors of the
contours Ly, by D;. At the unknown contour of an opening L, the boundary conditions have the form

On=-—p; Tn;=0; 0;=0y=const (2.1)
(t and n are the directions of the tangent and the normal to the contour of the body).

In the case of an elastic body, the value of ¢, =const is subject to determination during the process
of solution of the problem. For an elastoplastic material, the relationship o, =0, is a condition imposed
on the development of the plastic zone, i.e., it reduces to the requirement that, at the moment of origin,
the plastic zone embrace the whole contour of an opening at the same time, without penetrating into the
depths of the body. In this case, o, =const is a given value, for example, under the conditions of plane
strain oy =0, =—p 2k,

We go over to the parametric plane ¢ using the transform z = w(). The analytical function z =w (£)
effects the conformal mapping of the region Dy on Dy in the plane {, which is the exterior of circles Iy,
of radius A with centers at the points Py,.

On the basis of the equalities [10]
Op 40y =0y Gy (L =hed);

2w’ ()
]

0y — Ty '{—21"['7” = (O'y — Og '11" zitxy)

and the boundary conditions (2.1), for determining the three analytical functions ¢ (£), $(£), and w (£), we ob-
tain a nonlinear boundary-value problem at Ty,:

Re ¢(8)=a; (2.2)

2o@e )+ o (Y] =10 (D) (2.3)

Gy — [
([1: *4]7, b= 23 P).

2

The boundary condition (2.3) can be transformed. Solving the Dirichlet problem (2.2) we find that, in Dg
o(f)=a. (2.4)

Using (2.4), we write the boundary condition (2.3} at Iy, in the form
o’ (E) (=22 o'(Z). (2.5)
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We seek the functions ¥ (£) and w () in the form of the series (1.8), (1.9); in the series (1.8) the co~
efficients g k=1, 2,...) are identically equal to zero,

From the condition of the equality to zero of the principal vector of the forces acting on an arc con~

necting two congruent points in D, it follows that
n2
a= A 527‘42-

To set up equations for the remaining coefficients of the series (1.8), (1.9) of the functions ¥(£) and
w (£), we expand these functions in Laurent series in the neighborhood of the point £ =0. Substituting into
the boundary condition (2.5) at the contour T'y(¢ =7‘\e19), in place of ¥ (), @ (), and w'{{), their expansions in
Laurent series, and equating coefficients with e 4 =0, +1, £2,...), we obtain an infinite system of non~
linear algebraic equations for By, Axk.

The results of a calculation in the first two approximations are given in Table 2,
In the first approximation the equation of the equal~strength form of an opening has the form (1.14),
The constant o N is expressed in the form

Oy = %2 B2 + p. (2.6)
For an elastoplastic body, the relationship (2.6) is the condition for the solvability of the problem.

The author thanks G. P. Cherepanov for his interest in the work,
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